

CITY OF COCKBURN

ROAD CONSTRUCTION SERVICES

Crushed Recycled Concrete in Road Construction

By

Omar Qasem

August 2020

- City of Cockburn endeavours to maximise the utilisation of waste material in its activities in line with its Sustainability values and polices.
- The City initially looked into using Crushed Recycled Concrete (CRC) in the construction of road pavements in lieu of the typically, crushed limestone subbase and crushed granite basecourse.
- To minimise the risks, the City decided to use it for the subbase pavement only at this stage.
- Verde Drive Extension Project was identified as a pilot project for this purpose.

- The project includes construction of approx. 1.5 km long roadway requiring 3,000 cubic metres of subbase material (~6,000 ton)
- IPEAWALGA Specification for Class 2 Crushed Recycled Concrete Subbase, was adopted.
- Material was supplied by Urban Resources from its quarry in Hope Valley.
- The source of material was from the demolished concrete from Subiaco Stadium.

MATERIAL PROPERTIES

1. Particle Size Distribution (Percent Passing by Mass)

Sieve Size (mm)	Specified		Lab Test Results
	Crushed Limestone	CRC	
75	100	100	100
19	55 - 85	95 - 100	99
9.5		59 - 82	65
4.75		41 - 55	45
2.36	35 - 65	29 - 52	34
1.18		20 - 41	27
0.6		13 - 29	21
0.425		10 - 23	15
0.3		8 - 20	10
0.15		5 - 14	5
0.075	0 - 15	3 - 11	3

MATERIAL PROPERTIES

			Specified	Lab Test Results	
2.	Line	ear Shrinkage	4.0% Maximum	0	
3.	. Los Angeles Abrasion		42% Maximum	39.6%	
4.	. California Bearing Ratio (CBR)		100% Minimum	150%	
5.	5. Foreign Material (Maximum percentage by Weight)				
	*	Crushed Recycled Concrete (CRC)	100%	92.2%	
	*	Recycled Asphalt Pavement (RAP)	15%	0.3%	
	*	High density clay brick & tile	15%	5.0%	
	*	High density aggregates from roads etc	100%	2.2%	
	*	Low density material (plastic, plaster, etc.)	1.5%	0.1%	
	*	Organic Matter (Wood, etc.)	1%	0.1%	
	*	Unacceptable high-density materials	3%	<u> </u>	
				10070	

Specified

95%

85% Maximum

Lab Test Results

101% (Average)

60% (Average)

11.1% (Average)

CONSTRUCTION

- 1. Minimum Dry Density Ratio
- 3. Maximum Dryback
- 4. Optimum Moisture Content (OMC)
- 5. In general, material was easy to work. No difficulties encountered in achieving

CONCLUSION

- The City's first trial to use CRC in constructing subbase pavement for Verde Drive construction project was successful. The success was attributed to:
 - The quality of material properties exceeded the specified limits.
 - The brick and tile contents was low.
 - Compaction density and moisture content were relatively easy to achieve.
- The City is currently considering using CRC in future 2021/22 road construction projects:
 - Jandakot Road Upgrade project in Jandakot. The project requires 9,000 m3 (~18,000 tons) of subbase and 8,000m3 (~16,000 tons) of basecourse.
 - Hammond Road Upgrade Project in Success. The project requires 6,000 m3 (~12,000 tons) of subbase and 5,000m3 (10,000 tons) of basecourse.

CONCLUSION

- Factors to be considered:
 - Material Availability
 - Quality of Materials
 - Specifications to be adopted: IPEAWALGA spec vs. Main Roads WA Spec.
 - Cost

THANK YOU